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Abstract
For a single particle of mass m experiencing the potential −α/|x|, the 1D
Klein–Gordon equation is mathematically underdefined even when α � 1:
unique solutions require some physically motivated prescription for handling
the singularity at the origin. The procedure appropriate in most cases is to
soften the singularity by means of a cutoff. Here we study the bound states of
spin-zero particles in the potential −α/(|x| + R), extending the nonrelativistic
results of Loudon (1959 Am. J. Phys. 27 649) to allow for relativistic effects,
which become appreciable and eventually dominant for small enough mR: they
are totally different from conclusions based hitherto on mathematically simple-
seeming matching conditions on the wavefunction at x = 0. For realizable
R, all relativistic effects remain very small; but with mR decreasing to order
α2 the ground-state energy E decreases through zero, and soon after that mR

reaches a finite critical value below which E becomes complex, signalling a
breakdown of the single-particle theory. At this critical point of the curve
E(mR) the Klein–Gordon norm changes sign: the curve has a lower branch
describing a bound antiparticle state, with positive energy −E, which exists for
mR between the critical and some higher value where E reaches −m. Though
apparently unanticipated in this context, similar scenarios are in fact familiar
for strong short-range potentials (1D or 3D), and also for strong 3D Coulomb
potentials with α of order unity.
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1. Introduction and conclusions

1.1. Background and motivation

Ah! What avails the classic bent

and what the cultured word,

before the undoctored incident

that actually occurred?

The hydrogenic potential −α/r in spaces with other than three dimensions continues to
supply quantum mechanics with entertaining problems which are by no means exhausted.
In 1D, the question is complicated by the fact that wave equations featuring −α/|x| are
mathematically underdetermined, making it necessary either (i) to supplement them with
matching conditions at the origin, or (ii) to introduce a cutoff to soften the singularity there.
For definiteness, we shall consider a single particle of mass m in the nominally weak potential

V (x) = −α/(|x| + R), α � 1, mR � 1, (1.1)

near but not in the limit where mR → 0. We use natural units h̄ = 1 = c.
We aim to explore cutoffs handled relativistically, but in order to see cutoffs in context must

start with some comments on the recently more popular approach (i). Physically speaking,
the role of the supplementary matching or boundary conditions in this approach is to select
a Hilbert space where the underlying Hamiltonian and the momentum operator −i∂/∂x are
self-adjoint. The problem is essentially the same as one faces in 3D for potentials singular
like 1/rn, with n � 2: it turns on ideas readily legible from a remarkable early paper by Case
(1950), plus the comments on it by Popov (1971b, section 4). The mathematical difficulties
stem from the fact that the operators in question are not (even) essentially self-adjoint, i.e. that
their self-adjoint extensions1 are not unique. For the requisite 1D Schrödinger equation, this is
spelled out in modern terms e.g. by Fischer et al (1995) and by Tsutsui et al (2003), who make
it very clear that the matching conditions must be chosen to reflect the physics governing the
particle near the origin. But many papers, while acknowledging this requirement at some point,
nevertheless adopt conditions that appear to be motivated purely by notions of mathematical
simplicity, and then proceed to formulate the consequences in unguarded language suggesting,
or allowing the reader to infer, that they apply to any physical 1D model one might reasonably
be interested in. Examples include the otherwise illuminating discussions by Moshinsky
(1993), plus the related exchange between Newton (1994) and Moshinsky (1994); by Kurasov
(1996), plus the related exchange between Fischer et al (1997) and Kurasov (1997); and by
Gordeyev and Chhajlany (1997).

Often the purpose seems to be the elimination of those roots of the indicial equation that
yield radial wavefunctions supposedly too singular2 at the origin. But in most applications
the potential itself is not truly singular there. It is smoothed already in the 3D hydrogen
atom (by the finite charge density of the proton), and also in at least two important examples
where 1D serves to model a well-understood limit of or to approximate a 3D system: namely
hydrogen-like atoms in very strong magnetic fields (where the electron is effectively threaded

1 For a sketch of the theory of such extensions see e.g. Galindo and Pascal (1990), and for a fuller account Reed and
Simon (1980, 1975). Thaller (1992) discusses the relatively straightforward and uncontroversial applications to the
3D potential −α/|r|, where, fortunately, the extension required by the Dirac equation is unique.
2 As emphasized by Armstrong and Power (1963), amplifying Dirac (1947), the simplest pertinent observation in
3D is that ∇2 acting on functions that diverge like 1/r produces a delta-function δ(r) absent from the true equation.
But this argument fails in 2D and 1D. Some singular 1D solutions appear in appendix E below.
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on a finite-radius cylinder surrounding a field line: see e.g. Ruder et al 1994); and an electron
confined to the surface of a nanotube in the presence of an ion (see e.g. Bányai et al 1987).
In such cases the present writer can attach physical significance only to potentials like (1.1)
smoothed by a cutoff; and, by courtesy, to systems with arbitrarily small but still finite mR.
Many other examples occur in other papers easily found through their citing the seminal work
of Loudon (1959); and López-Castillo and de Oliveira (2006) make some interesting general
remarks about ways that 3D physics can generate 1D problems.

Unfortunately, in 1D, unlike 3D, the prescriptions widely favoured by recent papers
applying method (i) to the unsmoothed potential −α/|x| yield spectra quite different from
what one finds when smoothing is just about to disappear. The one important case where there
is no conflict is murium, a charged particle bound by image forces to a half-space it cannot
penetrate, so that the wavefunction must vanish on the surface: say an electron above liquid
helium (e.g. Nieto 2000). By contrast, Andrews (1976, 1988) argues that the singularity by
itself acts like an impenetrable barrier, turning particles on the half-lines x ≷ 0 into mutually
disjoint systems, and parity into an empty concept: a suggestion that the more complete
discussions already cited indeed show to be compatible with prima facie quite plausible
matching conditions, though it is not generally helpful for guiding calculations with finite
cutoffs. But, uniquely, Andrews does comment on cutoffs to the extent of spelling out that
short of the limit they admit tunnelling at finite rates, with consequent level splittings in the
observed spectra.

The literature cited so far relates to the Schrödinger equation, which, using cutoffs, i.e. by
method (ii), was solved half a century ago by Loudon (1959). His results are summarized in
appendix A: there are levels with En � m−α2m/2n2, n = 1, 2, 3, . . . , each a near-degenerate
parity doublet with even above odd; plus a nondegenerate even-parity ground state with an
energy conveniently written as E0 = m − α2m/2ξ 2. As R vanishes, the degeneracies become
exact, while E0 diverges because 1/ξ diverges, roughly like |2 log(αmR)|.

The present paper considers the corresponding 1D Klein–Gordon (KG) equation for
relativistic spin-zero particles. Though it will turn out that, for these, the relativistic effects
peculiar to 1D are largely academic (cf appendix A), they do bear on interesting questions of
principle. The mathematics governing singular potentials in 1D are the same for the KG as
for the Schrödinger equation. In particular, one faces the same choice between approaches
(i) and (ii); but the existing literature is scanty, and far less systematic. Following variants of
method (i), i.e. as consequences of the singular potential −α/|x|, the first paper, by Spector
and Lee (1985), noted the possibility of a tightly bound (even-parity) ground state with total
energy Ẽ0 ≡ m[1/2 −

√
1/4 − α2]1/2 � αm, which nowadays might be called a hydrino

(cf Dombey 2006); Moss (1987) rejects this; and de Castro (2005) claims that there are no
even-parity bound states at all. Other papers can be traced through references given by these3.

To guard the reader against false expectations, it may be worth repeating that we are not
concerned with the mathematical problems attending the truly singular potential −α/|x|. We
study only the physical problem of the potential (1.1) with finite R, whose mathematics are
unambiguous: the limit mR → 0, though it may be interesting, is regarded as secondary.
The writer’s view is that, sadly, one has to live with the fact that the mathematical options
available at present for −α/|x| cannot adequately elucidate the physics of V (x).

3 The 3D KG equation and the technically similar 2D Dirac equation have been discussed recently by Dombey
(2006). Still to be explored are the implications of method (ii) for the challenging cases of the 2D KG and the 1D
Dirac equations, which suffer from the additional difficulty that the roots of their indicial equations are complex.
Experience has taught the writer to make no guesses about what such studies might reveal. A paper on the 1D Dirac
equation by Benvegnù (1997), not citing Loudon’s work, uses method (i), and (as one would expect) identifies no
relativistic generalization of the level E0.
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1.2. Preview and summary

As just explained, we have nothing new to say about the singular potential −α/|x| tackled
directly (but cf appendix E); instead, we adopt (1.1) and follow method (ii) by applying
Loudons’s ideas relativistically. The differences from method (i) are drastic4. (a) Under
appropriate conditions (mR small but not too small) the consequences of the KG equation
must reduce to those of the Schrödinger equation, and prescriptions under which they do
not can have no application. (b) A ground state with relativistically strong binding does
eventually evolve from Loudon’s E0, but it is not truly related to the state with energy Ẽ0

noted by Spector and Lee. (c) Finally, what happens (or rather would happen) at unrealistically
small mR ∼ O(α2) is unlike anything yet envisaged under method (i), being governed by
a breakdown of single-particle theory explored hitherto only à propos of strong short-range
potentials, and of Coulomb potentials with α of order unity rather than small.

Sections 2.1, 2.2 write down the wave equation, defining scaled parameters and variables
essential to make it manageable: in particular, δ � α2 from (2.13), (2.14) measures the
strength or rather the weakness of the potential; λ or β ≡ λ/δ from (2.7), (2.15) measure the
eigenvalue E ≡ h̄ω; and Z or s ≡ mR/δ from (2.8), (2.15) measure the cutoff. Section 2.3
identifies solutions f integrable to infinity, and their slopes, equations (2.24)–(2.28), in terms
of standard confluent hypergeometrics. Section 3 then finds an eigenvalue equation for E by
subjecting f to the boundary conditions at the origin, appropriately to the parity. Section 4
uses these results to show that the levels subdivide naturally into Balmer-like and anomalous
states. We define Balmer-like states as those bound lightly, i.e. nonrelativistically: the name is
chosen by hindsight, since (for all mR � O(1)) their energies turn out to be very close to those
given by the Balmer formula for ordinary (3D) hydrogen, conformably to Loudon’s results
already quoted in section 1.1. Section 5 works out some details as mR shrinks, showing in
particular how the splitting of the parity doublets depends on n. Any other state is defined to be
anomalous; in fact it will turn out that there is only one such state, namely the (even-parity and
nondegenerate) ground state, which in the nonrelativistic regime (mR not too small) likewise
reduces to that found by Loudon. Operational versions of these definitions appear already in
section 2.2.

Section 6 and appendices B–D investigate the one anomalous state, which develops from
Loudon’s nonrelativistic ground state, but eventually becomes relativistic with decreasing mR.
In general E must be found numerically, and (6.3) re-writes the original eigenvalue condition
(3.4)–(3.10) in terms of integrals more convenient for computing the crucial function β(s). The
main features of β(s) are discussed in section 6.4, with plots in figures 2 and 3. Ahead of this,
section 6.3 identifies the remarkable special case s = s1 = 1/

√
1 − δ, which admits a simple

exact solution (2.30) in closed form, with β = 1, in other words with E/m = √
δ � α: this

suffices to show that for small enough cutoffs the binding does indeed become relativistically
tight5. On the same tack, the fact that E = 0 reduces the pertinent hypergeometrics to Bessel
functions allows one, in appendix B, to determine the corresponding scaled cutoff s2 (very
close to s1) as a zero of the relatively simple combination (B.4).

4 Though in 3D the conclusions reached by way of (i) and (ii) are generally much the same, the differences in 1D
show that the physics of the two methods is not the same at all. If the physics is that of method (ii), then logically
speaking it follows that not even 3D results can be justified by reasoning merely about singular potentials, no matter
what matching conditions one might adopt.
5 Dombey (2006) calls such formulae homeopathic, noting their prima facie paradoxical suggestion that no coupling
at all (i.e. α → 0) produces very tight binding (i.e. E/m → 0). The paradox stems from the fact that the limits
α → 0 and mR → 0 do not commute: homeopathism is a mirage seen when R vanishes at fixed α, but not when α

vanishes at fixed R.
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But the conclusion apparently least expected in the present context is that there exists
another scaled cutoff s3, only just below s2, where E reaches a minimum value between 0 and
−m: for s � s3, the eigenvalues and thereby the eigenfunction frequencies become complex.
This signals a breakdown of single-particle theory, beyond which we do not try to penetrate.
Correspondingly, the curve β(s) has a second branch, decreasing as s rises from s3 to a value
s4, where E reaches the continuum threshold −m. The values of s and of λ at these four special
points are tabulated at the end of section 6.4

The key to understanding this behaviour is that at s3 the KG norm (2.4) changes from
positive to negative, as shown in appendix C. Accordingly, for s3 � s � s4 the lower branch
describes a bound antiparticle, with charge −e instead of e, but with positive energy −E > 0;
thus the breakdown at s3 could be initiated by the spontaneous production of bound particle
plus bound antiparticle pairs, without any expenditure of energy by the agency maintaining the
potential. Such scenarios are familiar in both 3D and 1D theories of KG particles experiencing
strong short-range potentials, or Coulomb potentials with α ∼ O(1): references are given
near the end of section 6.1. It seems strange that no earlier work has brought these studies to
bear on the questions addressed in the present paper.

2. Basics

For introductions to the Coulomb KG equation in 3D we refer to the textbooks by Davydov
(1965), Schiff (1968), and Bethe and Jackiw (1988), plus the early but exceptionally clear
discussions by Case (1950, section 6) and Popov (1971b, section 4).

2.1. Generalities

Because V (x) is even in x, we need look only at x > 0, and for convenience define

y ≡ x + R � R. (2.1)

The wavefunction f (y) obeys the same equation as does the reduced radial s-state
wavefunction in 3D:

d2f

dy2
+

[(
E +

α

y

)2

− m2

]
f (y) = 0, (2.2)

subject to the boundary conditions

f (y → ∞) = 0,

{
f (R) = 0, (odd parity),

f ′(R) = 0, (even parity).
(2.3)

Bound states are confined to

−m < E < m.

The charge density ρ and the single-particle KG norm N are given by

N ≡ 2
∫ ∞

0
dx ρ ≡ 2

∫ ∞

0
dx(E − V (x))f 2(x) = 2

∫ ∞

R

dy

(
E +

α

y

)
f 2(y), (2.4)

where N is indefinite, its sign ε(N ) indicating the charge of the particle. The frequency is
ω = E/h̄; the energy is ε(N )E.
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2.2. Parameters and scaling

We shall consider only

α = 1/137 � 1,

and in forming numerical estimates take this as exact. Recall that the Bohr radius aB = 1/αm

is related to the reduced Compton wavelength 1/m and to the so-called classical electron
radius r0 by

1/m = αaB, r0 = α/m = α2aB = 2.8 fermi = 2.8 × 10−13cm. (2.5)

By coincidence, r0 is comparable to nuclear radii, which in some systems might be a physically
sensible choice for our cutoff R. Numerical estimates might then be based on

R ∼ r0 ⇒ mR ∼ α. (2.6)

We define

κ =
√

m2 − E2, λ = αE

κ
,

E

m
= λ√

λ2 + α2
,

κ

m
= α√

λ2 + α2
. (2.7)

Thus (λ = 0) ⇒ (E/m = 0) while (λ → ±∞) ⇒ (E/m → ±1).
Further, introduce

z ≡ 2κy, Z ≡ 2κR = 2mR
α√

λ2 + α2
. (2.8)

For instance, to study very small mR one might for simplicity choose R not as in (2.6), but so
that

α/R � m ⇒
{
mR � α,

Z � α2/
√

λ2 + α2

}
; (2.9)

this could be ensured by adopting mR � α2, the range that will turn out to hold most surprises.
As foreseen in section 1.2, two regimes of E will prove important. Balmer-like states

have

λ � O(1) ⇒ m − E ∼ α2m, Z � 2mRα/λ. (2.10)

By contrast, anomalous states have λ � α, which might include both

λ ∼ O(α) ⇒ {E/m � λ/α,m − E ∼ O(m)}, Z ∼ O(mR), (2.11)

and

λ � O(α2) ⇒ E/m � λ/α � α, Z � 2mR. (2.12)

Note that (2.6) already suffices to make Z small in both cases. It remains to be determined
what if any ranges of mR can realize these regimes.

With a view to the hypergeometrics that will emerge in section 2.3 we define also the
parameters

µ ≡
√

1/4 − α2 ≡ 1/2 − δ, δ = α2 + O(α4) � 5.328 × 10−5 � 1. (2.13)

Thus

α2 + δ2 = δ, α =
√

δ(1 − δ), µ − 1/2 = −δ, µ + 1/2 = 1 − δ. (2.14)

Finally, to study the ground state (which alone is anomalous) it proves convenient to scale
in terms of δ rather than α, introducing

β ≡ λ/δ, s ≡ mR/δ, Z ≡ 2δσ, (2.15)

with

σ = s
√

1 − δ/
√

1 − δ + δβ2. (2.16)
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2.3. Wavefunctions

The Klein–Gordon may now be re-written as Whittaker’s equation

f ′′(z) +

[
−1

4
+

λ

z
+

(1/4 − µ2)

z2

]
f (z) = 0. (2.17)

The solutions are best expressed in terms of confluent hypergeometric functions M. We use
the notation of Abramowitz and Stegun (1965, AS in the following) and write

f (z) = z1/2+µ e−z/2w(z) (2.18)

to obtain the defining confluent hypergeometric or Kummer’s equation

zw′′ + (b − z)w′ − aw = 0,

a = 1/2 + µ − λ = 1 − δ − λ,

b = 1 + 2µ = 2 − 2δ,

1 + a − b = 1/2 − µ − λ = δ − λ.

(2.19)

The solution vanishing at infinity is (AS 13.1.8 and 13.1.3)

w = U(a, b, z), U(a, b, z → ∞) ∼ z−a, (2.20)

U(a, b, z) = π

sin(πb)

{
M(a, b, z)

(b)(a − b + 1)
− z1−b M(a − b + 1, 2 − b, z)

(a)(2 − b)

}
, (2.21)

with the derivative (AS 13.4.21)

U ′(a, b, z) = −aU(a + 1, b + 1, z). (2.22)

The M can be represented by power series that converge for all z:

M(c, d, z) ≡ 1 +
c

d
· z

1!
+

c(c + 1)

d(d + 1)
· z2

2!
+ · · · . (2.23)

Thus

f (z) = e−z/2z1/2+µU(a, b, z) = Wλ,µ(z), (2.24)

where the W are Whittaker functions (AS 13.1.32–34). Equivalently

f = − π

sin(2πµ)
e−z/2

{
z1/2+µ M(1/2 + µ − λ, 1 + 2µ, z)

(1 + 2µ)(1/2 − µ − λ)

− z1/2−µ M(1/2 − µ − λ, 1 − 2µ, z)

(1 − 2µ)(1/2 + µ − λ)

}
(2.25)

= − π

sin(2πδ)
e−z/2

{
z1−δ M(1 − δ − λ, 2 − 2δ, z)

(2 − 2δ)(δ − λ)
− zδ M(δ − λ, 2δ, z)

(2δ)(1 − δ − λ)

}
(2.26)

= − π

sin(2πδ)
e−z/2

{
z1−δ M(1 − δ[1 + β], 2 − 2δ, z)

(2 − 2δ)(δ[1 − β])
− zδ M(δ[1 − β], 2δ, z)

(2δ)(1 − δ[1 + β])

}
.

(2.27)

From (2.24) and (2.22) one obtains

f ′(z) = e−z/2z−1/2+µ{[b/2 − z/2]U(a, b, z) − azU(a + 1, b + 1, z)}
= e−z/2zδ{[1 − δ − z/2]U(1 − δ − λ, 2 − 2δ, z)

− [1 − δ − λ]zU(2 − δ − λ, 3 − 2δ, z)}. (2.28)
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It will become important that U(a, b, z) and therefore f lack zeros with positive z if
a > 0 or if 1 + a − b > 0: see e.g. Slater (1960) and Buchholz (1969). With δ � 1, it is the
first condition that is operative, whence

λ < 1 − δ ⇒ f (z > 0) �= 0. (2.29)

Finally we note the special case where λ = δ, i.e. β = 1. Then the first terms of (2.26),
(2.27) drop out and the remaining M function reduces to unity:

λ = δ ⇒ f = e−z/2zδ, f ′ = e−z/2z−1+δ(δ − z/2). (2.30)

3. Quantization

3.1. The eigenvalue conditions

The bound-state energies are quantized by enforcing the appropriate inner boundary condition
from (2.3):

f (Z) = 0 : odd parity,

f ′(Z) = 0 : even parity,
(3.1)

with Z(λ,mR) given by (2.8).
To express these conditions in terms of the various functions M, we introduce the

convenient combinations

A = a = 1/2 + µ − λ = −λ + 1 − δ,

B = a − b + 1 = 1/2 − µ − λ = −λ + δ; (3.2)

note that sin[π(b + 1)] = −sin[πb] = sin[2πδ]; and find

U(a, b, Z) = π

sin(πb)

{
M(A, 1 + 2µ,Z)

(1 + 2µ)(B)
− Z−2µ M(B, 1 − 2µ,Z)

(1 − 2µ)(A)

}
,

U(a + 1, b + 1, Z) = −π

sin(πb)

{
M(A + 1, 2 + 2µ,Z)

(2 + 2µ)(B)
− Z−1−2µ M(B,−2µ,Z)

(−2µ)(A + 1)

}
.

Finally we define the auxiliary function

j (λ) ≡ (A)

(B)
= (1 − λ − δ)

(−λ + δ)
, (3.3)

and can then re-cast (3.1) into relatively convenient forms. We display these along with two
approximations that are adequate (i) because δ and Z are always small, and (ii) because small
δ entails 1/(2δ) � 2δ, as section 3.2 spells out in more detail. Then

j (λ) =
{
h(Z, λ) : odd parity,

g(Z, λ) : even parity,
(3.4)

where

h ≡ Z−1+2δ (2 − 2δ)

(2δ)
· M1

M(−λ + 1 − δ, 2 − 2δ, Z)

� Z−1+2δ (2 − 2δ)

(2δ)
M1 � Z−1+2δ · 2δ · M1, (3.5)

M1 ≡ M(−λ + δ, 2δ, Z) = M([−β + 1]δ, 2δ, Z); (3.6)

and
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Figure 1. Horizontal axis: λ, from (2.7). Vertical axis: j (λ), from equation (3.3), with the greatly
exaggerated value δ = 0.05. The straight line is j = −λ, which for realistically small values
of δ and for positive λ away from the immediate neighbourhoods of poles and zeros is a close
approximation to j (λ).

g ≡ Z−1+2δ (3 − 2δ)

(2δ)
· N

D
� Z−1+2δ (3 − 2δ)

(2δ)
· N

2
� Z−1+2δ · 2δ · N, (3.7)

D ≡ {[1 − δ − Z/2] [2 − 2δ] M(−λ + 1 − δ, 2 − 2δ, Z)

+ [−λ + 1 − δ] ZM(−λ + 2 − δ, 3 − 2δ, Z)} � 2, (3.8)

N ≡ [1 − δ − Z/2] M1 − [1 − 2δ] M2, (3.9)

M2 ≡ M(−λ + δ,−1 + 2δ, Z) = M([−β + 1]δ,−1 + 2δ, Z). (3.10)

3.2. Poles and zeros

Regarding (3.3)–(3.7), one should keep in mind that (ξ) has no zeros, and has poles at the
non-positive integers ξ = −n = 0,−1,−2, . . . , with residues (−1)n/n!. Thus j (λ) has zeros
at λ = δ, (1 + δ), (2 + δ), . . . , and poles at λ = (1 − δ), (2 − δ), . . .; in other words it has a
zero just to the right of λ = 0, and then a pole just to the left and a zero just to the right of
λ = 1, 2, 3, . . . . For positive λ well away from these points, generically so to speak, one has
j (λ) � (−λ + 1)/(−λ) = −λ. In particular, very close to the origin

j (|λ| � 1) � δ − λ, (3.11)

while near the other poles and zeros, i.e. near the positive integers,

{λ = n − δ + ε, n = 1, 2, 3, . . . , ε � 1} ⇒ j � (2δ/ε − 1)n � (2α2/ε − 1)n. (3.12)

Figure 1 sketches j (λ) with the greatly exaggerated value δ = 0.05, and −λ for
comparison; the verticals indicate asymptotes.
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4. The structure of the spectrum: Balmer-like versus anomalous states

An overview of the spectrum is afforded by the relation (AS 13.5.8)

f = e−Z/2Z1/2+µ

{
(b − 1)

(a)
Z1−b + O(1)

}

= e−Z/2Z1/2+µ

{
(2µ)

(1/2 + µ − λ)
Z−2µ + O(1)

}

= e−Z/2

{
(1 − 2δ)

(1 − δ − λ)
Zδ + O(Z1−δ)

}
. (4.1)

This suffices to show that, conformably with the definitions in sections 1.2 and 2.2, the levels
divide into those with λ � O(1), which we call Balmer-like, and possibly others with λ � 1,
which we call anomalous. It follows from (3.1) and (2.29) that all odd-parity states are
Balmer-like.

Because Z is small, the first term inside the braces dominates unless the gamma
function in its denominator is near a pole, i.e. unless λ is close to a positive integer
1, 2, 3, . . . . Elsewhere we have f � const × exp(−z/2)zδ , which cannot vanish, and
f ′ � const × exp(−z/2)zδ{−1/2 + δ/z}; thus f ′ which might vanish if z can get close
to 2δ, leaving open the possibility of just one such anomalous even-parity state.

By contrast, when the gamma function is near a pole, these constraints cease to apply, so
that Balmer-like states might exist near the points, but only near the points, where6

λ � n + 1/2 + µ = n + 1 − δ, n = 0, 1, 2, . . . , (4.2)

En

m
�

{
1 +

(
α

n + 1 − δ

)2
}−1/2

= 1 − α2

2 (n + 1)2 + O(α4). (4.3)

We are left with two tasks. The easier task is to verify that such conventional states can
actually satisfy the boundary conditions, and to determine their energies and parities. Section 5
will show that each Balmer-like level is a parity doublet, subject to weak hyperfine splitting
governed by mR, with the even-parity state above the odd. (The same happens under the
Schrödinger equation, as summarized in appendix A.) The harder task is to verify, in section 6,
that there is also an anomalous even-parity state, and to find its energy as a function of mR.
In fact the pattern of Balmer-like levels already implies that, as long as single-particle theory
makes sense, there exists at least one anomalous level, because the lowest Balmer-like level
is odd, whereas in our potential the ground state, if it exists, must be nodeless and therefore
even.

5. Balmer-like states

5.1. Odd parity

To construct h from (3.5) one takes M1 from (3.6); recalls that now λ ∼ n � δ; sets
Z → 2mRα/λ, Zδ � (2mRα/n)α

2 → 1; and finds

h � 2δ

Z
− λ + δ �

( α

mR
− 1

)
λ. (5.1)

6 Close to the eigenvalues for the singular potential subject to matching conditions that ensure finite 〈〈V 〉〉: see
appendix E.
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Thus h(λ) rises rapidly with λ, and a look at figure 1 and at (3.12) shows that it intersects j (λ)

at points where

{λ = n − δ + ε, n = 1, 2, 3, . . . , ε � 1} ⇒ h � (α/mR − 1)n = j � (2α2/ε − 1)n.

Hence

εn(odd) � 2αmR, (5.2)

independently of n, and agreeing with Loudon’s nonrelativistic �λ(odd) quoted in (A.3)
below.

5.2. Even parity

Now g is given by (3.7)–(3.10), with λ � n � δ, and with Z � 2mRα/n. To an excellent
approximation

g � λZ2δ{−1 + α3/mR} � n{−1 + α3/mR − 2α2 log(n/2mRα)}. (5.3)

Equating this to j � n{2α2/ε − 1} we obtain

εn(even) � 2

{α/mR + 2 log(n/2mRα)} . (5.4)

In the extreme relativistic regime of very small mR the logarithm is negligible (i.e. in
(5.3) one could then have set Z2δ → 1 from the start), whence

εn(even) � 2mR/α (relativistically). (5.5)

Since this exceeds εn(odd) by the large factor 1/α2, it is indeed the even-parity state that lies
higher.

By contrast, nonrelativistically the logarithm can dominate, in which case

εn(even) � 1/log(n/2mRα), (nonrelativistically), (5.6)

again in agreement with (A.3). (It is straightforward to verify that for odd parities the logarithm
does not become similarly competitive.)

6. The anomalous state

6.1. Introductory

As discussed in section 1.1, several theoretical papers assert that the anomalous ground-state
solution whether of the Schrödinger or the Klein–Gordon equation ‘does not exist’; hence we
proceed slowly. The problem is to determine the function β(s) by solving f ′(Z) = 0, in the
extreme-relativistic regime7 where λ = βδ � 1: because δ is so small this still admits widely
varying values of β. Here the writer cannot find uniformly applicable analytic approximations,
and apart from three anchor points is forced to fall back on numerics. Since it proves awkward
to go on looking for intersections of j (λ) with g(λ) (the two functions are too nearly parallel),
the following subsection sets up an alternative and more manageable scheme.

Fortunately, two of the anchor points demonstrate, ahead of any elaborate numerics, that
cutoffs s � O(1) can indeed yield anomalous ground states: namely the special case β = 1 at
s = s1 ∼ 1 + (section 6.3), and β = 0 nearby at s = s2 ∼ 1− (appendix B).

Further, we shall find that there exists a minimum cutoff s3 (with β3 < 0), discoverable
only numerically, below which the eigenvalues become complex, and the single-particle theory

7 For strictly practical purposes such investigations are unnecessary, because appendix A shows that even the lowest
realizable cutoff stops the ground-state eigenvalue from becoming relativistic in the first place.
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fails altogether (appendix C). Finally, for s3 � s � s4 (appendix D) β(s) turns out to have
another branch, with negative KG norm, indicating a bound state of an antiparticle (coupling
constant −α instead of α). As s approaches s4 from below, β on this branch diverges to
−∞, so that the eigenvalue E4 approaches the continuum threshold −m. This pattern, though
it surprised the writer in the context of nominally weak 1D Coulomb potentials, is actually
familiar for strong short-range KG potentials in 3D (e.g. for square wells), as discussed very
clearly by Snyder and Weinberg (1940), Schiff et al (1940), Rafelski et al (1978) and Fulling
(1976, 1989). For a recent illustration and for more references see Villalba and Rojas (2006).
The same pattern occurs also for strong Coulomb-related 3D potentials, with α ∼ O(1), as
discussed by Popov (1971a,b). What happens in 1D (unlike 3D: see Dombey 2006) is that,
for any fixed α however small, the inner part of the Coulomb potential becomes effectively
strong for small enough mR.

6.2. An alternative form of the eigenvalue equation

We use a representation for U valid when its first parameter and Z are positive (AS 13.2.5),

U(a, b, Z) = 1

(a)

∫ ∞

0
dt e−Zt ta−1(1 + t)b−a−1, (6.1)

and the corresponding one for U(a + 1, b + 1, Z). Substitution into (2.28) and setting f ′ = 0
then yield

0 =
∫ ∞

0
dt e−Zt (1 + t)λ−δ{(1 − δ − Z/2)t−δ−λ − Zt 1−δ−λ}. (6.2)

Finally we switch to θ = Zt , drop some overall factors, and rearrange the result in terms of
the scaled variables β and σ(s, β) as

G1 = G2,

(
G1

G2

)
≡ 1

δ

∫ ∞

0
dθ e−θ (2δσ + θ)δ(β−1)θ−δ(β+1)

( {1 − θ}
{δ(1 + σ)}

)
. (6.3)

This is to be solved for β, given s. In the anomalous regime we assume (and can eventually
verify) that s, σ, β are of order unity, or larger. It is relatively easy to see that as δ → 0 the
two terms in G1 tend to cancel: in these circumstances the factor (1 − θ) of its integrand is
effectively of order δ. Thus G1 and G2 are of comparable magnitude for small δ. The overall
factor 1/δ is optional; it has been introduced to facilitate numerical displays, in view of the
no-cutoff limit where σ = 0 entails (G1,G2) = (2, 1)(1 − 2δ) � (2, 1).

6.3. The special case β = 1

Recall from (2.30) that β = 1 ⇔ λ = δ, and that then f (z) = exp(−z/2)zδ , while Z = 2δ.
The object is to determine whether this eigenvalue can be realized, and if yes, then by

what value of s = σ/
√

1 − δ. The awkward factors (2δσ + θ)δ(β−1) in (6.3) now reduce to
unity, allowing all the integrals to be done in a closed form:

β = 1 : G1 = 2(1 − 2δ), G2 = (1 + σ)(1 − 2δ),

G1 = G2 ⇒ σ = 1 ⇒ s = s1 ≡ 1/
√

1 − δ � 1 + α2/2.
(6.4)

Thus we have an exact eigenvalue

E/m = λ/
√

λ2 + α2 =
√

δ � α. (6.5)

Appendix E.3 shows that this is the same as the lowest eigenvalue achievable in the
singular potential V = −α/|x| if one admits divergent 〈〈V 〉〉, via the root q2 of the indicial
equation. Here however it is achieved in V = −α/(|x| + R) with finite mR = sδ.
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Figure 2. Horizontal axis: s ≡ mR/δ. Vertical axis: β ≡ λ/δ, with λ from (2.7). Low resolution
plot. The vertical downward asymptote at s4 and the last stages of the approach to it are not shown.

6.4. The function β(s)

There are two obvious ways to β: (a) select values of s, and for each find the value of β where
G1 and G2 intersect; or (b) use the implicit-plot facility of MAPLE to plot β against s directly.
The two methods cross-check satisfactorily; (a) is the more accurate, but takes longer. Figure 2
is a rough low-resolution display, with the vertical asymptote left as understood. Figure 3
is a more accurate plot of the region near and just below s = 1: it covers the special
case just discussed, the case of zero energy, and the minimum cutoff s3 below which the
eigenvalues become complex. We comment on the main features of the curve, starting at the top
right.

(i) For large enough s numerical checks confirm that the corresponding large β tally with
Loudon’s nonrelativistic ground states from appendix A. For instance, (6.3) with s = 1/α

(whence mR = δ/α � α) yields β = 1.416 × 103, compared to 1.428 × 103 from (A.7).
(ii) At s1 = 1/

√
1 − δ � 1 + α2/2 one meets the exact solution from section 6.3, with β = 1

and E/m = √
δ � α.

(iii) At s2, only just below unity, the curve crosses the axis, with β = λ = E/m = 0. There,
f (z) reduces to (z/π)−1/2Kµ(z/2), and s2 can be located as the zero of a combination of
similar functions, without further recourse to confluent hypergeometrics. The details are
spelled out in appendix B.

(iv) At s3, still very close to s2 but now with β = β3 < 0, the curve reverses, in the sense that
its tangent becomes vertical (dβ/ds → ∞). For s < s3, the eigenvalue equation (6.3) has
no solutions with real λ, i.e. with real E, and thereby with real frequencies. For want of
analytic approximations the value of s3 can be determined only by trial and error, through
repeated applications of method (a), with the result entered in the table below. Appendix
C proves that the Klein–Gordon norm N changes sign at this point.
Accordingly, the lower branch of the curve, with λ < λ3, has N < 0: it describes a bound
state of an antiparticle, with charge −e and positive energy −E = �/

√
�2 + α2, where
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Figure 3. Horizontal axis: s ≡ mR/δ. Vertical axis: β ≡ λ/δ, with λ from (2.7). High resolution
plot, covering the special points β(s1) = 1, β(s2) = 0, and β ′(s3) → ∞, as discussed in
section 6.4.

� ≡ −λ. At s3 the bound particle and bound antiparticle have equal and opposite energies,
and with s � s3 the system is unstable against spontaneous pair creation, conformably
with the normal-mode frequencies becoming complex. In other words, with small enough
cutoff the system can no longer be understood on the basis of single-particle theory, and
second quantization becomes unavoidable. The physics is well elucidated and referenced
in the papers already cited in section 6.1.

(v) As s approaches a finite value s4 from below, the curve approaches a vertical asymptote,
i.e. −λ = � → ∞, indicating that the energy tends to m, the threshold of the unbound
antiparticle continuum. This is shown in appendix D, which also determines s4 in terms
of Bessel functions.

Tabulating these special cutoffs one has

λ = δ : s1 = 1/
√

1 − δ � 1.000 027,

λ = 0 : s2 � 0.999 069,

N = 0 : 0.9913 < s3 < 0.9914,

λ → −∞ : s4 � 6.1712.
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Appendix A. The nonrelativistic regime

Nonrelativistically, (2.2) is replaced by the Schrödinger equation

− h̄2

2m

d2f

dx2
+ Vf = ENRf, ENR ≡ E − m, (A.1)
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under the same boundary conditions. This problem with the potential (1.1) is solved by
Loudon (1959), whose results for small R/aB we merely quote8, partly re-expressed in terms
of our α2m instead of his e2/aB.

There is a Balmer-like spectrum of parity doublets (λ � n with principal quantum number
n = 1, 2, 3, . . .), conveniently specified by quantum defects δn � 1 (not to be confused with
our parameter δ) so that

ENR = − α2m

2 (n + δn)
2 = −α2m

2n2
+ �ENR, �ENR � (α2m)δn

n3
. (A.2)

The splitting entails λ → λ + �λ with

�λ = �ENR
∂λ

∂E
= α�ENR

m2

(m2 − E2)3/2
�

(
λ

n

)3

δn � δn,

�λ(even) � δn(even) � 1

log [n/2mRα]
� δn(odd) � 2αmR � �λ(odd).

(A.3)

Note that in this approximation δn(even) depends but weakly on n, and δn(odd) not at all9.
The ground-state energy is anomalous, and is governed by the transcendental equation

(our ξ is Loudon’s α)

ENR = −α2m

2ξ 2
, (αmR = R/aB � 1) ⇒ log(2αmR) − log ξ + 1/2ξ � 0. (A.4)

Thus

λ = αE/
√

m2 − E2 � α
√

m/2ENR = ξ ; (A.5)

and, very roughly,

1/ξ ∼ −2 log(2αmR), ENR ∼ −2α2m log2(2αmR). (A.6)

Of course, αm → 0 ⇒ ξ → 0 and ENR → −∞, which must eventually entail
|ENR| � m, outside the nonrelativistic domain: hence the present paper. But the divergence
is only logarithmic. For instance, a quite humdrum (quasi-nuclear) R = 1 fermi produces
only ξ = 0.0669 and |ENR/m| = 0.005 96; and very close to R = r0 = α/m = 2.82 fermi
one finds

αmR = δ = 1/2 −
√

1/4 − α2 ⇒ ξ = 0.0761, |ENR/m| = 0.004 60, (A.7)

both energies being very far from relativistic.

Appendix B. Zero energy

For zero energy, the mathematics simplifies considerably. We start from

λ = 0 ⇒ Z = Z2 = 2mR2, (B.1)

and exploit an exact connection between confluent hypergeometric and Bessel functions (AS
13.6.21)

U(1/2 + µ, 1 + 2µ,Z) = π−1/2 exp(Z/2)Z−µKµ(Z/2). (B.2)

8 van Haeringen (1978) discusses the same equation in somewhat different and possibly more modern terms, without
referring to Loudon.
9 Loudon studies also the truncated potential V (|x| > R) = −α/|x|, V (|x| < R) = −α/R. When R/aB � 1 the
change makes no difference to δn(even) or to the ground-state energy (A.4) below, but δn(odd) � 2(R/aB)2 becomes
second- instead of first-order small in R/aB. There is no universal rule about which model is preferable. Though the
truncated potential looks less unrealistic at large distances, there are applications where (1.1) does better by virtue of
its cusp (e.g. for higher order harmonic generation by laser light: Gordon et al 2005).
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This entails

f (Z) = 1√
π

Z1/2Kµ(Z/2). (B.3)

Since all Bessel K are positive, f cannot vanish for any finite value of Z, confirming that no
negative-parity state can have zero energy.

For positive-parity states one needs

f ′(Z) = 1

2
√

πZ
{(1 + 2µ)Kµ(Z/2) − ZKµ+1(Z/2)}, (B.4)

where we have used (AS 9.6.26) K ′
µ(u) = −Kµ+1(u) + (µ/u)Kµ(u). Solving f ′(Z2) =

f ′(2s2δ) = 0 numerically, one finds

s2 = mR2/δ = 0.999 07. (B.5)

Appendix C. Reversal of the Klein–Gordon norm

C.1. A theorem

We study the sign ε(N ) of the Klein–Gordon norm N along the curve β(s). It indicates
the sign of the charge of the bound particle, while the energy of the bound state is Eε(N ).
Crucially, it turns out that there exists a lowest value s3 of s admitting a bound state, where
dβ/ds → ∞, whence likewise dE/ds → ∞; and at such a point N changes sign.

More precisely, N (s3) = 0 follows from a theorem about bound-state solutions

{(Eη − Vη(τ))2 − p2 − m2}ψη(τ) = 0, (C.1)

where η may be any parameter in V . Purely for convenience10 we choose to fix magnitudes
through ∫

dτ ψ∗
η (τ )ψη(τ ) = 1 ⇒

∫
dτ

∂ψ∗
η (τ )

∂η
ψη(τ) + cc = 0, (C.2)

with cc standing for ‘complex conjugate’; and define

〈Qη〉η ≡
∫

dτ ψ∗
η (τ )Qηψη(τ), (C.3)

with Qη being any operator, which may but need not depend on η. Then

Nη = Eη − 〈Vη〉η. (C.4)

The theorem reads

dEη/dη → ∞ ⇒ Nη = 0. (C.5)

It generalizes a result given by Klein and Rafelski (1975, their equation (2.17)) for the special
case where η is an overall strength-factor of the potential.

10 Looking for the sign of N it would obviously be perverse to try and impose N = 1. Correspondingly, 〈· · ·〉 here is
not the same as the KG expectation value 〈〈· · ·〉〉 defined in appendix E.1 below.
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C.2. Proof

To prove (C.5) we construct 〈· · ·〉η for (C.1), and differentiate with respect to η. Noting that
〈Eη〉η = Eη and 〈m2〉η = m2, the result can be displayed as

dEη

dη
Nη = Eη

d

dη
〈Vη〉η − 1

2

d

dη

〈
V 2

η

〉
η

+
1

2

d

dη
〈p2〉η ≡ Tη, (C.6)

where

d

dη
〈Vη〉η =

[∫
dτ

∂ψ∗
η (τ )

∂η
Vηψη(τ) + cc

]
+

∫
dτψ∗

η (τ )

(
∂Vη

∂η

)
ψη(τ),

and similarly for d
〈
V 2

η

〉
η

/
dη.

In view of (C.6) it remains only to show that Tη is convergent where dEη/dη → ∞. We
use (C.1)–(C.3) to explicate

d

dη
〈p2〉η =

∫
dτ

∂ψ∗
η (τ )

∂η
p2ψη(τ) + cc =

∫
dτ

∂ψ∗
η (τ )

∂η

(−2EηVη + V 2
η

)
ψη(τ) + cc. (C.7)

On substitution into Tη several terms cancel, and the rest simplify to

Tη =
∫

dτ |ψη(τ)|2(Eη − Vη)
∂Vη

∂η
. (C.8)

In our present problem η → R,ψη → f,
∫

dτ . . . → ∫ ∞
−∞ dx . . . , and Vη →

−α/(|x| + R). Then TR is convergent as long as R is finite, simply because ER is finite,
while VR(x) = −α/(|x| + R) is finite for all x, and vanishes as x → ∞. �

C.3. Check

To determine ε(N) we can drop overall constant positive factors of N without comment,
indicate this with arrows →, and have

N →
∫ ∞

−∞
dx f 2(x){E − V } →

∫ ∞

Z

dz f 2(z)

{
λm√

λ2 + α2
+

2α2m/z√
λ2 + α2

}
,

whence

N → −N1 + N2, N1 = �

∫ ∞

Z

dz f 2(z),

N2 = 2α2
∫ ∞

Z

dz f 2(z)/z, (� ≡ −λ).

(C.9)

Clearly N is positive when λ � 0, but has become negative when � → ∞, i.e. when
E → −m. To verify that the sign changes at s3 we choose s = 0.991 35, just above s3; from
(6.3) determine the two corresponding values of B ≡ −β, call them Ba < Bb; and evaluate
Na1,2 and Nb1,2. One finds Ba = 16.462, Bb = 17.925 and

Na1 = 16.446, Na2 = 17.174, Na = 0.728;
Nb1 = 17.906, Nb2 = 17.177, Nb = −0.729. �
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Appendix D. Small Z and large Λ ≡ −λ

Here the eigenvalue equation f ′(Z) = 0 is best written as

0 = 1 − δ − Z/2 − (1 − δ + �)ZU2/U1, Z ≡ 2mRα/
√

�2 + α2, (D.1)

U2 ≡ U(� + 2 − δ, 3 − 2δ, Z), U1 ≡ U(� + 1 − δ, 2 − 2δ, Z). (D.2)

We are interested in Z → 0, and start by proving that this cannot happen while � remains
convergent11. For if it did, then

U2−→
Z→0

− π

sin(2πδ)
· Z−2+2δ

(� + 2 − δ)(−1 + 2δ)
, (D.3)

U1−→
Z→0

π

sin(2πδ)
· Z−1+2δ

(� + 1 − δ)(2δ)
(D.4)

would reduce (D.1) to

0 = 1 − δ − (1 − δ + �)
(1 − 2δ)

(1 − δ + �)
= δ: false.

Instead, one finds that the limits Z → 0 and � → ∞ are linked through

lim
Z→0,�→∞

Z� = 2mRα = C̃, (D.5)

where C̃ is a constant: for (AS 13.3.3)

lim
c→∞ (1 + c − d)U(c, d, z/c) = 2z1/2−d/2Kd−1(2

√
z)

and equations (D.1)–(D.4) then entail

0 = 1 − δ − C̃ lim
�→∞

U(�, 3 − 2δ, C̃/�)

U(�, 2 − 2δ, C̃/�)
= 1 − δ −

√
C̃K2−2δ(2

√
C̃)

K1−2δ(2
√

C̃)
. (D.6)

This determines C̃:

C̃ ≡ Cδ, C = 0.090 09 ⇒ s4 = mR4

δ
= C

2α
= 6.1712. (D.7)

Appendix E. The singular potential

E.1. Bound-state wavefunctions and the indicial equation

With R = 0 from the start, (2.18)–(2.21) identify the eigenfunction that is square-integrable
to +∞ as

f (z > 0) = − π

sin(2πµ)
exp(−z/2)

{
z1/2+µ M(1/2 + µ − λ, 1 + 2µ, z)

(1 + 2µ)(1/2 − µ − λ)

− z1/2−µ M(1/2 − µ − λ, 1 − 2µ, z)

(1 − 2µ)(1/2 + µ − λ)

}
. (E.1)

As z → 0+ the two components of f vary like z1/2±µ = z1−δ and zδ , respectively,
corresponding to the two roots q1 = 1 − δ and q2 = δ of the indicial equation q2 − q +
1/4 − µ2 = 0 for (2.17).

11 Our strategy resembles Popov’s (1971a, appendix A), but the tactics are different.
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Since the potential is invariant under reflections, the eigenfunctions have or may without
loss of generality be chosen to have definite parity ±1, with f (−z) = ±f (z) respectively.
Under (2.4) they are normalizable regardless of λ, which can therefore be determined only
by imposing more restrictive criteria. Those endemic in the literature (cf the references in
section 1) are much the same as for the Schrödinger equation (and/or a demand that the KG
expectation value 〈〈V 〉〉 ≡ ∫ ∞

−∞ dx ρV
/ ∫ ∞

−∞ dxρ should be finite), and they are deployed
with the same disregard of the implications of smoothing. Here we aim merely to register the
more salient mathematical facts, without further comment on the physics beyond some final
cautions voiced in section E.4.

E.2. The root q1: finite 〈〈V 〉〉
Finite 〈〈V 〉〉 evidently requires that the second component of f be eliminated, i.e. that

1/2 + µ − λn = −n, λn = n + 1/2 + µ = n + 1 − δ, n = 0, 1, 2, . . . , (E.2)

which in the nonrelativistic limit yields the Balmer spectrum (4.2).
The wavefunctions normed through (2.18) and (2.20) read

fn(z > 0) = Xn e−zn/2z1/2+µ
n M(−n, 1 + 2µ, zn),

Xn ≡ − π

sin(2πµ)(1 + 2µ)(−n − 2µ)
, zn = 2αmx√

α2 + λ2
n

.

Here M has just (n + 1) terms, and (AS 13.6.9)

M(−n, 1 + 2µ, z) = n!

(1 + 2µ)n
L(2µ)

n (z) = 1

(1 + 2µ)n
ezz−2µ

(
d

dz

)n

(e−zz2+2µ), (E.3)

(2µ + 1)n being Pochhammer’s symbol, and L
(2µ)
n a generalized Laguerre polynomial (AS

22.3.9 and Erdélyi (1953)). For instance, approximating λn � n + 1 one finds

f0 � const × exp(−αmx)x1−δ, f1 � const × exp(−αmx/2)x1−δ {1 − αmx/2} . (E.4)

Both functions vary with z on a scale of 1/αm = aB.

E.3. The root q2: divergent 〈〈V 〉〉
By contrast, to eliminate the first and keep the second component of f on the right-hand side
of (E.1) one must choose

1/2 − µ − λ̃n = −n, λ̃n = n + 1/2 − µ = n + δ, n = 0, 1, 2, . . . . (E.5)

In the nonrelativistic limit λ̃n+1 becomes degenerate with λn. Only λ̃0 is anomalous:

λ̃0 = δ, β̃0 = 1,
Ẽ0

m
= δ√

α2 + δ2
=

√
δ � α. (E.6)

This is the solution noted by Spector and Lee (1985).
The wavefunctions normed as before read

f̃ n(z > 0) = X̃n e−z̃n/2z̃1/2−µ
n M(−n, 1 − 2µ, z̃n),

X̃n ≡ − π

sin(2πµ)(1 − 2µ)(−n + 2µ)
, z̃n = 2αmx√

α2 + λ̃2
n

, (E.7)

where M(−n, 1 − 2µ, z̃n) can be expressed by (E.3) with µ → −µ. For instance,
approximating λ̃0 = δ � α2 and λ̃1 � 1 one finds

f̃ 0 � const × exp(−mx)xδ, f̃ 1 � const × exp(−αmx/2)xδ{1 − mx/α}.



1030 G Barton

Thus f̃ 0 varies on the scale 1/m of the Compton wavelength. By contrast, the exponential
factor of f̃ 1 falls only on a scale of aB, and on this scale the second term of its polynomial
factor (1 − x/α2aB) is spectacularly enhanced relative to the first.

E.4. Caution

(i) Both the fn and the f̃n vanish and have infinite slope as z → 0+. It is sometimes inferred
that because of this they can be continued to negative z only with odd parity, and that
even-parity states ‘do not exist’.

(ii) If for any reason one wished to keep members from both series, then one would need
to face the complications of a potentially over-complete Hilbert space. For instance, we
have just seen that both f0 and f̃0 are nodeless except at the origin: hence they cannot
be KG-orthogonal to each other unless, arbitrarily, they are assigned opposite parities.
Matching conditions chosen to make the momentum and the underlying Hamiltonian
self-adjoint sidestep this problem (cf the references cited in section 1), but no such choice
yet implemented fits the physics appropriate to small but finite mR.
Two discrepancies are especially fraught.

(iiia) The ground state found in section 6 is not at all akin to the eigenvalue λ̃0, equation (E.6),
allowed by the root q2 of the indicial equation: the latter is essentially relativistic, while
the former evolves continuously with decreasing mR from the nonrelativistic ground state
identified in appendix A. It is mere coincidence that λ̃0 agrees with the solution for the
special cutoff considered in section 6.3: the two systems and the equations that govern
them are quite different.

(iiib) Though the excited states form parity doublets, these are unconnected with the near-
degeneracies between λ̃n+1 and λn: witness the fact that both members of the doublet
are close to (E.2), split by amounts independent of δ and vanishing with mR. Thus the
splitting is indeed analogous to hyperfine rather than to fine structure, just as in Loudon’s
nonrelativistic analysis. Hence one might well have expected (correctly as it happens
under a cutoff) that the odd states will turn out to be less sensitive to R than the even,
simply because their wavefunctions vanish at the origin. But in this naive form the
argument would apply only if the problem with R = 0 were well-defined, with a unique
and exact solution, allowing small finite R to be treated perturbatively as an afterthought;
whereas we have seen that that is not the case. On the other hand, the splittings could
probably be linked to the kind of tunnelling process envisaged by Andrews, though no
such calculations appear to have been attempted.
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